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Abstract. In a peer-to-peer (P2P) system, nodes typically connect to a small set
of random nodes (their neighbors), and queries are propagated along these con-
nections. Such query flooding tends to be very expensive. We propose that node
connections be influenced by content, so that for example, nodes having many
“Jazz” files will connect to other similar nodes. Thus, semantically related nodes
form a Semantic Overlay Network (SON). Queries are routed to the appropriate
SON:s, increasing the chances that matching files will be found quickly, and re-
ducing the search load on nodes that have unrelated content. We have evaluated
SONSs by using an actual snapshot of music-sharing clients. Our results show that
SONs can significantly improve query performance while at the same time al-
lowing users to decide what content to put in their computers and to whom to
connect.

1 Introduction

Peer-to-peer systems (P2P) have grown dramatically in recent years. They offer the
potential for low cost sharing of information, autonomy, and privacy. However, query
processing in current P2P systems is very inefficient and does not scale well. The ineffi-
ciency arises because most P2P systems create a random overlay network where queries
are blindly forwarded from node to node. As an alternative, there have been proposals
for “rigid” P2P systems that place content at nodes based on hash functions, thus mak-
ing it easier to locate content later on (e.qg., [14, 8]). Although such schemes provide
good performance for point queries (where the search key is known exactly), they are
not as effective for approximate, range, or text queries. Furthermore, in general, nodes
may not be willing to accept arbitrary content nor arbitrary connections from others.

In this paper we propose Semantic Overlay Networks (SONSs), a flexible network
organization that improves query performance while maintaining a high degree of node
autonomy. With Semantic Overlay Networks (SONSs), nodes with semantically similar
content are “clustered” together. To illustrate, consider Figure 1 which shows eight
nodes,A to H, connected by the solid lines. When using SONs, nodes connect to other
nodes that have semantically similar content. For example, néd®s andC all have
“Rock” songs, so they establish connections among them. Similarly, iogdesand F
have “Rap” songs, so they cluster close to each other. Note that we do not mandate how
connections are done inside a SON. For instance, in the Rap SON’hisamt required
to connect directly ta#'. Furthermore, nodes can belong to more than one SON (e.g.,
C belongs to the Rap and Rock SONSs). In addition to the simple partitioning illustrated



Rock

o

g JE]
(]

I

Fig. 1. Semantic Overlay Networks

by Figure 1, in this paper we will also explore the use of content hierarchies, where for
example, the Rock SON is subdivided into “Soft Rock” and “Hard Rock.”

In a SON system, queries are processed by identifying which SON (or SONs) are
better suited to answer it. Then the query is sent to a node in those SONs and the query
is forwarded only to the other members of that SON. In this way, a query for Rock
songs will go directly to the nodes that have Rock content (which are likely to have
answers for it), reducing the time that it takes to answer the query. Almost as important,
nodes outside the Rock SON (and therefore unlikely to have answers) are not bothered
with that query, freeing resources that can be used to improve the performance of other
queries.

There are many challenges when building SONSs. First, we need to be able to classify
queries and nodes (what does “contain rock songs” means?). We need to decide the
level of granularity for the classification (e.g., just rock songs versus soft, pop, and
metal rock) as too little granularity will not generate enough locality, while too much
would increase maintenance costs. We need to decide when a node should join a SON
(if a node has just a couple of documents on “rock,” do we need to place it in the same
SON as a node that has hundreds of “rock” documents?). Finally, we need to choose
which SONs to use when answering a query.

Many of our questions can only be answered empirically by studying real P2P con-
tent and how well it can be organized into SONs. For our empirical evaluation we have
chosen music-sharing systems. These systems are of interest not only because they are
the biggest P2P application ever deployed, but also because music semantics are rich
enough to allow different classification hierarchies. In addition there is a significant
amount of data available that allows us to perform realistic evaluations. While our ex-
perimental results in this paper are particular to this important application, we have no
reason to believe they would not apply in other applications with good classification
hierarchies.

Also note that due to space limitations, in this paper we do not present the full
results of our work. A more detailed and formal description of our approach, as well as
additional experimental results, can be found in the extended version of this paper [1].



2 Related Work

The idea of placing data in nodes close to where relevant queries originate was used
in early distributed database systems [3]. However, the algorithms used for distributed
databases are based on two fundamental assumptions that are not applicable to P2P
systems: that there are a small number of stables nodes, and that the designer has total
control over the data. There are a number of P2P research systems (CAN [8], CHORD
[14], Oceanstore [4], Pastry [10], and Tapestry [21]) that are designed so documents
can be found with a very small number of messages. However, all these techniques
either mandate a specific network structure or assume total control over the location
of the data. Although these techniques may be appropriate in some application, the
lack of node autonomy has prevented their use in wide-scale P2P systems. There is a
large corpus of work on document clustering using hierarchical systems (see [5] for

a survey). However, most clustering algorithms assume that documents are part of a
controlled collection located at a central database. Clustering algorithms for decentral-
ized environments have also been studied in the context of the web. However, these
techniques depend on crawling the data into a centralized site and then using clustering
technigues to either make web search results more accurate (as in SONIA [11]) or easier
to understand (as in Vivisimo [17]). A more decentralized approach has been taken by
Edutella [6] and HyperCup [13] where peers with similar content connect to the same
super peer.

3 Semantic Overlay Networks

In this section we introduce informally the concept of Semantic Overlay Networks
(SONSs) (see [1] for a formal definition). In a P2P system, the links between the nodes
typically form a single overlay network. In this paper we advocate the creation of mul-
tiple overlay networks to improve search performance. Wehaliofocus on on how
queries are routed within an overlay network (see Section 2 for a brief overview of cur-
rent solutions to the intra-overlay network routing problem). Therefore, we will ignore
the link structure within an overlay network and we will represent an overlay network
just by the set of nodes in it.

Requests for documents are made by issuing a guang some additional system-
dependent information (such as the horizon of the query). A query is also system depen-
dent and it can be as simple as a document identifier, or keywords, or even a complex
SQL query. In this paper we assume that queries are partial, so the request includes a
minimum number of results that need to be returned.

3.1 Classification Hierarchies

Our objective is to define a set of overlay networks in such a way that, when given a
request, we can select a small number of overlay networks whose nodes have a “high”
number of hits. The benefit of this strategy is two fold. First, the nodes to which the
request is sent will have many matches, so the request is answered faster; and second,
but not less important, the nodes that have few results for this query will not receive it,
avoiding wasting resources on that request (and allowing other requests to be processed
faster).
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We propose using a classification hierarchy as the basis of the formation of the over-
lay networks. For example, in Figure 2, we show 3 possible classification hierarchies
for music documents. In the first one, music documents are classified according to their
style (rock, jazz, etc.) and their substyle (soft, dance, etc.); in the second one, they are
classified by decade; and in the third one, they are classified by tone (warm, exciting,
etc.).

Each document and query is classified into one or neatconcepts in the hierar-
chy. However, in practice, classification procedures mairpreciseas they may not
able to determine exactly to which concept a query or document belongs. In this case,
imprecise classification functions may return non-leaf concepts, meaning that document
or query belongs to one or more descendant of the non-leaf concept, but the classifier
cannot determine which one. For example, when using the leftmost classification hier-
archy of Figure 2, a “Pop” document may be classified as “Rock” if the classifier cannot
determine to which substyle (“Pop,” “Dance,” or “Soft”) the document actually belongs.
Classifiers may also makaistakedy returning the wrong concept for a query or doc-
ument. We call the set of documents that classify into the same concept the “bucket” of
that concept.

In a P2P system, documents are actually kept by nodes. Therefore, we need to clas-
sify nodes, rather than documents. We call a group of semantically related nodes a
Semantic Overlay Network (SON), and we associate each SON with a concept in the
classification hierarchy. We call a SON associated with congeibte SON forc or
SON.. For example, in the leftmost hierarchy in Figure 2 (if we assume that only the
its only concepts are the ones shown), we will define at 9 SONs: 6 associated with the
leaf nodes (soft, dance, pop, New Orleans, etc.), one associated with rock, another as-
sociate with jazz, and a final one associate with music. To completely define a SON, we
need to explain how nodes are assigned to SONs and how we decide which SONs to
use to answer a query.

A node decides which SONSs to join based on the classification of its documents.
There are many strategies for node placement. For example, we may place a node in
SON. if it has any document classified inThis strategy is very conservative as it will
place a node i ON.. if just one document classifies asA less conservative strategy
will place a node inSO N, if a “significant” number of document classifiesasSuch
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Fig. 3. Generating Semantic Overlay Networks

less-conservative strategy has two effects: it reduces the number of nodes in a SON
and it reduces the number of SONs to which a node belongs. The first of these effects
increases the advantages of SONs as fewer nodes need to be queried. The second effect
reduces the cost of SONs as the greater the number of SONs to which a node belongs,
the greater the the node overhead for handling many different connections. However,

a less conservative strategy may prevent us from finding all documents that match a
query. In Section 6, we study different strategies for assignment of nodes to SONSs.

After assigning nodes to SON, we may make adjustments to the SONs based on the
actual data distributions in the nodes. For example, if we observe that a SON contains
only a very small number of nodes, we may want to consolidate that SON with a sibling
or its parent in order to reduce overhead.

To summarize, the process of building and using SONs is depicted in Figure 3. First,
we evaluate potential classification hierarchies using the actual data distributions in the
nodes (or a sample of them) and find a good hierarchy. This hierarchy will be stored by
all (or some) of the nodes in the system and it is used to define the SONs. A node joining
the system, first floods the network with requests for the hierarchy in a Gnutella fashion
(we do not address security problems in this paper, but inconsistent hierarchies may be
detected by obtaining the hierarchy from multiple sources and using a majority rule).
Then, the node runs a document classifier based on the hierarchy obtained on all its
documents. Then, a node classifier assigns the node to specific SONs (by, for example,
using the conservative strategy described in this section). The node joins each SON by
finding nodes that belong to those SONSs. This can be done again in a Gnutella fashion
(flooding the network until nodes in that SON are found) or by using a central directory.
When the node issues a query, first it classifies it and sends it to the appropriate SONs
(nodes in those SONSs can be found in a similar fashion as when the node connected to
its SON). After the query is sent to the appropriate SONs, nodes within the SON find
matches by using some propagation mechanism (such as Gnutella flooding or super
peers).

In the next sections, we will study the challenges and present solutions for building
a P2P system using Semantic Overlay networks. We will evaluate our solutions by sim-



ulating a music-sharing system based on real data from Napster [19] and OpenNap [16].
Specifically, in this paper we will address the following challenges:

— Classification hierarchies for SONs (Section 4): If nodes have very diverse files,
there will not be enough clustering to merit the use of SONs. So, in practice, will
we see enough clustering? What hierarchies will yield the most clustering and the
best SON organization?

— Classifying queries and documents (Section 5): Imprecise classifiers can map too
many documents and queries to higher levels of the hierarchy, making searches
more expensive. What are the options for building classifiers? Are they precise
enough for our needs? What is the impact of classification errors?

— SON membership (Section 6): When should a node join a SON? What is the cost
of joining a SON? Can we reduce the number of SONs that a node needs to belong
to (while being able to find most results)?

— Searching SONSs (Section 7): How do we search SONs? Is it worth having Semantic
Overlay Networks? Is the search performance of a SON-based system better than a
single-overlay network system such as Gnutella?

4 Classification Hierarchies

In this section we present the challenges and some solutions to the problem of choosing
a good classification hierarchy for a SON-based system. Specifically, we will define
what a good classification hierarchy is, how can we evaluate a classification hierarchy,
and how can we choose among a set of possible hierarchies.

A good classification hierarchy is one that: (i) produces buckets with documents
that belong to a small number of nodes, (ii) nodes have documents in a small number
of buckets, and (iii) it allows for easy-to-implement classification algorithms that make
a low number of errors (or no errors at all). (See [1] for the rationale behind these
criteria.) Using this criteria, we can evaluate classification hierarchies (with the final
objective of choosing the best one). This evaluation is a very important step as we have
seen that if we are not careful in choosing a good classification hierarchy we may reduce
or even eliminate the benefits of using SONs. To evaluate, first, we need to make sure
that classifiers can be implemented and that they are efficient. Then, we use the actual
data from the nodes in the system to predict the size of the SONs as well as the number
of SONSs to which a node will belong.

4.1 Experiments

To illustrate the issues described in this section, we evaluate the three music classifi-
cation hierarchies illustrated earlier in Figure 2. In that figure we only present a small
subset of the concepts in each classification hierarchy. The full sets of concepts are pre-
sented in the extended version of this paper [1] and are based on the hierarchy used
by All Music Guide[18], a music database maintained by volunteers who manually
classify songs and artist.
The first classification hierarchy divides music files according first to their style

(e.g., Rock, Jazz, Classic, etc.), and then to their substyle (e.g., Soft Rock, Dance Rock,
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etc.). For style, there are a total of 26 categories and a music file can only belong to
one category; while for substyle, there are 255 categories and a file can be classified
in multiple substyles. The second hierarchy classifies music files based on the decade
on which the piece was originally published (10’s or before, 20’s, ..., 80's, and 90’s or
newer). Music files can only be classified in one decade. Finally, the third classification
hierarchy divides files according to the “tone” of the piece (e.g., warm, exciting, sweet,
energetic, party, etc.). There are a total of 128 tones and a music file can be classified in
multiple tones.

In our experiment, we used the crawl of 1800 Napster nodes made at the University
of Washington during the month of May 2001 [12]. This crawl included the identity
of the node (user name), and for each node, the listing of its files. For most nodes,
filenames were of the form “directory/author-songtitle.mp3” which allowed us to easily
classify files by author and song titles. There was additional information (length of file,
bit rate, and a signature of the content) that was not used in our evaluations. Actual file
content was not available.

To evaluate the style/substyle classification hierarchy, we will first evaluate the style
classification hierarchy by itself and then (if needed) we will add to the evaluation the
substyle dimension. In Figure 4, we show the distribution of Style buckets. To generate
this graph, for each node we counted the number of style categories for which the node
had one or more files. Then we counted the number of nodes with the same number of
style categories and plotted it on the graph. For example, if a node had files in the Rock,
Jazz, Country, and Classic styles (and no files in the other styles), then the node would
have be counted in the bar for “4 style” buckets. ¢ From the graph, we can see that 425
nodes (about 24% of the total nodes) have files in just one style. Moreover, 90% of the
nodes have files in eight or fewer style categories. This result means that if we define a
SON based on the style of files, most nodes will have to handle very few connections.

As indicated before, the smaller the SON, the better query performance will be.
However, we cannot compute the size of the Style SONs without the specific node-to-
SON assignment strategy. Therefore, we will assume the most conservative strategy: a
node will belong to a Style SON if it has one or more files in that Style bucket. Figure 5
shows a histogram for the number of nodes that have one or more files in each Style
bucket. To generate this graph we counted, for each style, the number of nodes that have
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one or more files classified in that style. We then counted how many styles had a number
of nodes in the ranges 0 to 199, 200 to 399, and so on, and plotted them on the graph.
For example, the leftmost bar in the graph means that 14 styles buckets had documents
that belonged to between 200 and 399 nodes. The high frequency for bucket size in the
interval [200,399] is good news as it shows that the maximum size of most SONs will
be small with only 11% to 22% of the nodes. However, there is one style bucket (shown
by the rightmost bar) that has documents belonging to between 1600 and 1800 nodes.
Thus, almost all nodes in the system have one or more documents for that bucket (this
bucket corresponds to the style “Rock”). Given that there is little advantage on creating
a SON based on the style “Rock,” we need to explore if it is possible to subdivide it
further by using substyles.

We now consider SONs based on the substyle classification. Although the previous
analysis pointed that we only needed to subdivide the Rock style category (and perhaps
the 2 other categories with documents belonging to between 1000 and 1200 nodes),
for completeness we will analyze all substyles categories. In Figure 6 we now show
the substyle distribution, analogous to Figure 4. ¢ From the graph, we can see that 328
nodes (about 18% of the total nodes) have files in just one substyle. Moreover, 90% of
the nodes have files in 30 or less substyle categories. These results are again positive as
it shows that number of SONs to which most nodes may belong is small. In Figure 7
we show the bucket size histogram, analogous to Figure 5. ¢ From the figure we can see
that 222 of the substyles (87% of the total) will have documents belonging to less than
400 nodes. However, there are again a few substyle categories that will have documents
that belong to a large number of nodes, but this problem is not as bad as the one that
we had when using the style classification hierarchy by itself. In particular, the category
with the most number of nodes, “Alternative Pop Rock,” (which is represented by the
rightmost bar in the histogram) will have documents belonging to only 1031 nodes
(57% nodes). Even though the “Alternative Pop Rock” SON will have many nodes, it
is still half the size of a full Gnutella network that links all the nodes. In conclusion,

a combined style and substyle classification hierarchy is a good candidate for defining
SONSs as the maximum number of SONs that a node needs to join is small and the
maximum number of nodes in a SON is also relatively small.



We also analyzed the usa of Decades as a criteria for classifying documents (graph
not shown). Although most nodes had documents in only a few decade buckets, we
found that more than half of the SONs will have more than 600 nodes. In fact, almost
all nodes will have documents for the 70s, 80s, and 90s buckets. Therefore, given that
we do not have a way of subdividing those decades, we have to reject the decade clas-
sification hierarchy.

When analyzing the the distribution of tone buckets (graph not shown), we found
that the median number of buckets for which a node has documents is 43, which will
result in nodes belonging to a high number of SONs. However, we also found that most
buckets will contain documents belonging to a relatively small number of nodes. Specif-
ically, 60% of the buckets will have documents belonging to 625 or fewer nodes, and
90% of the buckets will have documents belonging to 875 nodes. In conclusion, using
a classification hierarchy based in tone is borderline and depending on the specifics of
the tradeoff between nodes maintaining a large number of connections and the benefits
of relatively small SONs, we may decide to use it or not. Nevertheless, of all the clas-
sification hierarchies evaluated, the one based on style/substyle is clearly superior and
we will use it in the rest of our experiments.

5 Classifying Queries and Documents

In this section we describe how documents and queries are classified. Although the
problem of classifying documents and the problem of classifying queries are very sim-
ilar, the requirementdor the document and query classifiers can be very different.
Specifically, it is reasonable to expect that nodes will join a relatively stable P2P net-
work at a low rate (a few per minute); while we could expect a much higher query rate
(hundreds or even more per second). Additionally, node classification is more bursty
as when a node joins the network it may have hundreds of documents to be classified;
on the other hand, queries will likely to arrive at a more regular rate. Under these con-
ditions, the document classifier can use a very precise (but time consuming) algorithm
that can process in batch a large number of documents; while, the query classifier must
be implemented by a fast algorithm that may have to be imprecise.

The classification of documents and queries can be done automatically, manually,
or by a hybrid processes. Examples of automatic classifiers include text matching [7],
Bayesian networks [9], and clustering algorithms [15]. These automatic techniques have
been extensively studied and they are beyond the scope of this paper. Manual classifi-
cation may be achieved by requiring users to tag each query with the style or substyle
of the intended results. If the user does not know the substyle or style of the potential
results, he can always select the root of the hierarchy so all nodes are queried. Finally,
hybrid classifiers aid the manual classification with databases as we will see shortly in
our experiments.

5.1 Evaluating our Document Classifier

Documents were classified by probing the database of All Music Guide at allmusic.com [18].
In this database songs and artists are classified using a hierarchy of style/substyle con-
cepts equivalent to the leftmost classification hierarchy of Figure 2. Recall that for
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Fig. 8. Choosing SONSs to join

each Napster node used in our evaluation we had a list of flenames with the format
“directory/author-song title.mp3.” As a first step, the document classifier extracted the
author and the song title for the file. The classifier then probed the database with that
author and song and obtained a list of possible song matches. Finally, the classifier se-
lected the highest rank song and found its style and substyles. If there were not matches
in the database, the classifier assigned “unknown” to the style and substyle of the file.

There were many sources of errors when using our document classifier. First, the
format of the files may not follow the expected standard, so the extraction of the author
and song title may return erroneous values. Second, we assumed that all files were music
(but Napster could be, and was actually used, to share other kind of files). Third, users
made misspellings in the name of artist and/or song (to reduce the effect of misspellings,
we used a phonetic search in the All Music database, so some common misspellings did
not affect the classification). Finally, the All Music database is not complete, which is
especially true in the case of classical music.

To evaluate the document classifier, we measured the number of incorrect classifi-
cations. We selected 200 random filenames and manually found the substyles to which
they belong (occasionally using the All Music database and Google as an aid to find the
substyles of obscure pieces). We then compared the manual classification with the one
obtained from our document classifier. We considered a classification to be incorrect for
a given document if the document classifier returned one or more substyles to which the
document should not belong. Note that an “unknown” classification from our classifier,
although very imprecise, is not incorrect as it would correspond to the root node of the
classification hierarchy. In our evaluation, we found that 25% of the files were classified
incorrectly.

However, a node can still be correctly classified even if some of its documents are
misclassified. (If a node is properly classified, it will be possible to find the misclassi-
fied documents later on.) To evaluate the true effect of document misclassification, we
selected 20 random nodes, we classified all their documents, and assigned the nodes to
all the substyles of their respective documents. We considered a classification to be in-
correct for a givemodeif the node was not assigned to one or more substyles to which
the node should belong. In our evaluation, we found that only 4% of the nodes were
classified incorrectly. This result shows that errors when classifying documents tend to
cancel each other within a node. Specifically, even if we fail to classify a document as,



for example, “Pop Rock,” it is likely that there will be some other “Pop Rock” docu-
ment in the node that will be classified correctly so the node will still be assigned to the
“Pop Rock” SON.

5.2 Evaluating our Query Classifier

For our experiments, queries were classified by hand by the authors of this paper.
Queries were either classified in one or more substyles, a single style, or as “music”(the
root of the hierarchy). In our experiments we used queries obtained from traces of actual
gueries sent to an OpenNap server run at Stanford [20]. Thus, by manually classifying
queries, we are “guessing” what the users would have selected from say a drop-down
menu as they submitted their queries.

Unfortunately, we cannot evaluate the correctness of the query classification method
(we, of course, consider our classification of all queries to be correct). Nevertheless,
we can study how precise our manual classification was (i.e., how many times queries
were classified into a substyle, a style, or at the root of the classification hierarchy).
We selected a trace of Sistinct queries (the original query trace contained many
duplicates which the authors of [20] believed were the result of cycles in the OpenNap
overlay network) and then manually classified those queries. The result was that 8% of
the queries were classified at the root of the hierarchy, 78% were classified a the style
level of the hierarchy and 14% at the substyle level. As we will see in Section 7, the
distribution of queries over hierarchy levels will impact the overall system performance,
as more precisely classified queries can be executed more efficiently.

6 Nodes and SON Membership

In Section 3 we presented a conservative strategy for nodes to decide which SONSs to
join. Basically, under this strategy, nodes join all the SONs associated with a concept
for which they have a document. This strategy guarantees that we will be able to find all
the results, but it may increase both the number of nodes in each SON and the number
of connections that a node needs to maintain. A less conservative strategy, where nodes
join some of all the possible SONSs, can have better performance. In the next subsection
we introduce a non-conservative assignment strategy: Layered SONSs.

6.1 Layered SONs

The Layered SONs approach exploits the very common zipfian data distribution in doc-
ument storage systems. (It has been shown that the number of documents in a website
when ranked in order of decreasing frequency, tend to be distributed according to Zipf’s
Law [2].) For example, on the left side of Figure 8 we present a hypothetical histogram
for a node with a zipfian data distribution (we’ll explain the rest of the figure shortly). In
this histogram we can observe that 45% of the documents in the node belong to category
c1, about 35% of the documents belong to categgryhile the remaining documents
belong to categories; to cg. Thus, which SONs should the node join? The conserva-
tive strategy mandates that the node need to§@iiV,, throughSON,,. However, if

we assume that queries are uniform over all the documents in a category, it is clear that



the node will have a higher probability of answering querieSN,., and SON.,

than queries in the other SONSs. In other words, the benefit of having the node belong
to SON., andSON,, is high, while the benefit of joining the other SONs will be very
small (and even negative due to the overhead of SONSs). A very simple and aggressive
alternative would be to have the node join o8l9 N., andSON,,. However, this al-
ternative would prevent the system from finding the documents in the node that do not
belong to categories andcs.

Nodes determine which SONSs to join based on the number of documents in each
category. To illustrate, consider again Figure 8. At the right of the figure we present the
hierarchy of concepts that will aid a node in deciding which SONs to join. In addition,

a parameter of the Layered SON approach is the minimum percentage of documents
that a node should have in a category to belong to the associated SON (alternatively, we
can also use an absolute number of documents instead of a percentage). In the example,
we have set that number at 15%. Let us now determine which SONs the node with the
histogram at the left of Figure 8 should join. First, we consider all the base categories
in the hierarchy treec{ to cg). As ¢; andcy are above 15%, the node jois8®) N,
andSON,,. As all the remaining categories are all below 15%, the node does not join
their SONs. We then consider the second level categaties:(, andci1). As the
combination of the non-assigned descendants of; andcy, is higher than 15%, the

node joinsSON,, . However, the node does not join the SON:gf as the combination

of ¢; andcg are not above 15%. Similarly the node does not join the SONg;0és

c7 andcg are below the threshold. Finally, the node joins the SON associated with the
root of the tree §ON..,,) as there were categories (cs, c7 andcg) that are not part of

any assignment. This final assignment is done regardless of the 15% threshold as this
ensures that all documents in the node can be found (in our example, if we do not join
SON,,, we will not be able to find the documents in the SONsQfcs, c7 andcs).

The conservative assignment is equivalent to a Layered SON where the threshold for
joining a SON has been set to 0%. In this case, the node will join the SONs associated
with all the base concepts for which it has one or more documents.

6.2 Experiments

In this subsection we contrast the result, in terms of SON size and number of SONs
per node, of the conservative approach of Section 4.1 and the Layered SON approach.
For reason of space, we will only consider the Style/Substyle classification hierarchy
(the results for the other classification hierarchies are consistent with the ones presented
here and in Section 4.1).

In Figure 9, we show the distribution of style SONs when using Layered SONs
with a threshold of 35% and for the conservative assignment (labeled as 0% SON). The
graphs do not include the “root” category to which, in practice, all nodes belong. ¢ From
the graph, we can see that 616 nodes (about 34% of the total nodes) need to belong
to just one style. This result shows a significant improvement versus the conservative
assignment of Section 4.1 when only 24% of the nodes belonged to one style. Moreover,
97% of the nodes need to belong to four or less style categories (versus 90% when doing
conservative assignments).

Using layered SONSs also helps reduce the number of nodes per SON. Figure 10
shows a histogram for the size of the SONs (excluding the “root” SON). ¢From the
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graph we can see that by using Layered SONs we have a larger number of small SONs.
However, as before, we still have a problem with the “Rock” style (rightmost bar in the
graph) to which almost all nodes will have to belong. In conclusion, there is a significant
reduction in the size of SONs when using Layered SONs instead of the conservative
strategy. This reduction will lead to significant improvements in query performance.

We now consider Layered SONs based on the Style/Substyle classification hierar-
chy with a threshold of 10% (graph not shown). In this case, the conservative assign-
ment strategy behave similarly in terms of the number of connections required at each
node. However, the advantage of Layered SONs can be seen when considering the size
of each SON as when using Layered SONs, SONs will have on average 135 nodes (ver-
sus 517 nodes for the conservative approach). Moreover, the Layered SON does not
have any SONs with more than 875 nodes, while the conservative approach has 24. In
conclusion, using Layered SONs with a Style/Substyle hierarchy produces a significant
improvement versus the conservative assignment as we have much smaller SONs.

7 Searching SONs

In this section, we explore the problem of how to choose among a set of SONs when
using Layered SONSs. (We discussed in Section 3.1 the mechanisms used by nodes to
actually send the queries to those SONs.)

7.1 Searching with Layered SONs

Searches in Layered SONs are done by first classifying the query. Then, the query is
sent to the SON (or SONs) associated with the base concept (or concepts) of the query
classification. Finally, the query is progressively sent higher up in the hierarchy until
enough results are found. In case more than one concept is returned by the classifier,
we do a sequential search in all the concepts returned before going higher up in the
hierarchy. For example, when looking for a “Soft Rock” file we start with the nodes in
the “Soft Rock” SON. If not enough results are found (recall that partial queries have a
target number of results), we send the query to the “Rock” SON. Finally, if we still have
not found enough results, we send the query to the “Music” SON. There are multiple
approaches when searching with Layered SONSs. In this paper we are concentrating on
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a single serial one (as our objective is to minimize humber of messages). However,
there are other approaches such as searching more than one SON in parallel (by asking
each one for some fraction of the target results) which may result in higher number of
messages, but will start producing results faster.

This search algorithm does not guarantee that all documents will be found if there
are classification mistakes for documents. Not finding all documents may or may not be
a problem depending on the P2P system, but in general, if we need to find all documents
for a query (in the presence of classification mistakes), our only option is an exhaustive
search among all nodes in the network. However, we will see that with our document
classifier (which has an per-document classification mistake probability of 25%), we
can find more than 95% of the documents that match a query. In addition, this search
algorithm may result in duplicate results. Specifically, duplication can happen when a
node belongs, at the same time, to a SON associated with a substyle and to the SON
associated with the parent style of that substyle. In this case, a query that is sent to both
SONSs will search the node twice and thus it will find duplicate results.

7.2 Experiments

We will now consider two possible SON configurations and evaluate their performance
against a Gnutella-like system. As before, we used the crawl of 1800 Napster nodes
made at the University of Washington, which were classified using the All Music database.
We assumed that the nodes in the network (both inside SONs and in the Gnutella net-
work) were connected via an acyclic graph and that on average each node was connected
to four other nodes. Although the assumption of an acyclic graph is not realistic, we are
considering acyclic networks as the effect of cycles is independent of the creation of
SONSs. Cycles affect a P2P system by creating repeated messages containing queries
that the receiving nodes have already seen. Therefore, an analysis of an acyclic P2P
network gives us a lower estimate of the number of messages generated.

For this experiment we used 50 different random queries obtained from traces of
actual queries sent to an OpenNap server run at Stanford [20]. These queries were clas-
sified by hand as described in Section 6. Queries classified at the substyle level were
sent sequentially to the corresponding SON (or SONSs), and then to the style-level SON.
Queries classified at the style level, were first sent sequentially to all substyles of that
style, and then to the style level. Queries classified at the root of the hierarchy were



sent to all nodes. We measure the level of recall averaged for all 50 queries versus the
number of messages sent in the system. As in the previous experiment, the graphs were
obtained by running 50 simulations over randomly generated network topologies.

In Figure 11, we show the result of this experiment. The figure shows the number
of messages sent versus the level of recall. Layered SONs were able to obtain the same
level of matches with significantly fewer messages than the Gnutella-like system. How-
ever, Layered SONSs do not achieve recall levels of 100% in general (average maximum
recall was 93%) due to mistakes in the classification of nodes.

The results of Figure 11 show the average performance for all query types (dotted
line). However, if a user is able to precisely classify his query, he will get significantly
better performance. To illustrate this point, Figure 11 also shows with a dashed the num-
ber of messages sent versus the level of recall for queries classified at the substyle level
(the lowest level of the hierarchy). In this case, we obtain a significant improvement
versus Gnutella. For example, to obtain a recall level of 50%, Layered SONs required
only 461 messages, while Gnutella needed 1731 messages, a reduction of 375% in the
number of messages. Moreover, even at high recall levels, Layered SONs were able to
reach a recall level of 92% with about 1/5 of the messages that Gnutella required.

The shape of the curve for the message performance of Gnutella is slightly differ-
ent for all queries and for queries classified at the substyle level. The reason for this
difference is very subtle. The authors of this paper were only able to classify very pre-
cisely (i.e. to the substyle level) queries for songs that are very well known. Due to their
popularity, there are many copies of these songs throughout the network. Therefore, a
Gnutella search approach will have a high probability of finding a match in many of
the nodes visited, making the flooding of the network less of a problem than with more
rare songs. Nevertheless, even in this case, Layered SONs performed much better than
Gnutella.

8 Conclusion

We studied how to improve the efficiency of a peer-to-peer system by clustering nodes
with similar content in Semantic Overlay Networks (SONs). We showed how SONs
can efficiently process queries while preserving a high degree of node autonomy. We
introduced Layered SONSs, an approach that improves query performance even more at
a cost of a slight reduction in the maximum achievable recall level. ¢ From our exper-
iments we conclude that SONs offer significant improvements versus random overlay
networks, while keeping costs low. We believe that SONs, and in particular Layered
SONSs, can help improve the search performance of current and future P2P systems
where data is naturally clustered.
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